Optical mapping of arrhythmias induced by strong electrical shocks in myocyte cultures.
نویسندگان
چکیده
Strong electrical shocks can induce arrhythmias, which might explain why shocks fail to defibrillate. In this work, the localization of arrhythmia source and the relationship with local changes of transmembrane potential (V(m)) were determined in geometrically defined cell cultures using optical mapping technique. Uniform-field shocks with strength (E) of 10 to 50 V/cm were applied across cell strands with width of 0.2 and 0.8 mm. The threshold for arrhythmia induction was dependent on the strand width: in the 0.8- and 0.2-mm strands, arrhythmias were induced at E>/=20.6+/-1.8 V/cm (n=8) and E>/=30.3+/-1.8 V/cm (n=8), respectively. At the same shock strength, the arrhythmia rate and duration were larger in the wider strands. During shocks that induced arrhythmias, the V(m) waveforms on the anodal side revealed a positive V(m) shift that followed the initial large hyperpolarization and postshock elevation of the diastolic V(m). These V(m) changes were absent during failed shocks. To determine the localization of the arrhythmia source, arrhythmias were induced in narrow cell strands containing regions of local expansion. Optical mapping of the first extrabeat with a coupling interval of 315+/-60 ms revealed that in the majority of cases (9 out of 13) the source of arrhythmias was localized in the areas of shock-induced hyperpolarization. Thus, (1) induction of postshock arrhythmias, their rate, and their duration strongly depend on the tissue structure; (2) arrhythmia induction coincides with the appearance of a positive V(m) shift in the areas of hyperpolarization; and (3) the source of postshock arrhythmias is located in the areas of shock-induced hyperpolarization.
منابع مشابه
Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application.
OBJECTIVES Responses of Ca(i)2+ to electrical shocks are believed to be important in defibrillation but measurements of shock-induced Ca(i)2+ changes during different phases of the action potential (AP) are lacking. The effects of shocks on Ca(i)2+ and Vm were investigated in geometrically defined cell cultures and in a computer model. METHODS Uniform-field shocks (E = 10.4+/-0.9 V/cm) were a...
متن کاملVirtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
Delivery of a strong electric shock to the heart remains the only effective therapy against ventricular fibrillation. Despite significant improvements in implantable cardioverter defibrillator (ICD) therapy, the fundamental mechanisms of defibrillation remain poorly understood. We have recently demonstrated that a monophasic defibrillation shock produces a highly nonuniform epicardial polarizat...
متن کاملA Basic Mechanism of Defibrillation Failure
Delivery of a strong electric shock to the heart remains the only effective therapy against ventricular fibrillation. Despite significant improvements in implantable cardioverter defibrillator (ICD) therapy, the fundamental mechanisms of defibrillation remain poorly understood. We have recently demonstrated that a monophasic defibrillation shock produces a highly nonuniform epicardial polarizat...
متن کاملNonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
Defibrillation shocks induce nonlinear changes of transmembrane potential (DeltaVm) that determine the outcome of defibrillation. As shown earlier, strong shocks applied during action potential plateau cause nonmonotonic negative DeltaVm, where an initial hyperpolarization is followed by Vm shift to a more positive level. The biphasic negative DeltaVm can be attributable to (1) an inward ionic ...
متن کاملEffects of electrical shocks on Cai2+ and Vm in myocyte cultures.
Changes in intracellular calcium concentration (DeltaCa(i)2+) induced by electrical shocks may play an important role in defibrillation, but high-resolution DeltaCa(i)2+ measurements in a multicellular cardiac tissue and their relationship to corresponding Vm changes (DeltaVm) are lacking. Here, we measured shock-induced DeltaCa(i)2+ and DeltaV(m) in geometrically defined myocyte cultures. Cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 90 6 شماره
صفحات -
تاریخ انتشار 2002